Search results for "Circle graph"

showing 2 items of 2 documents

A Graph Based Algorithm For Intersection Of Subdivision Surfaces

2003

Computing surface intersections is a fundamental problem in geometric modeling. Any boolean operation can be seen as an intersection calculation followed by a selection of the parts necessary for building the surface of the resulting object. A robust and efficient algorithm to compute intersection on subdivision surfaces (surfaces generated by the Loop scheme) is proposed here. This algorithm relies on the concept of a bipartite graph which allows the reduction of the number of faces intersection tests. Intersection computations are accelerated by the use of the bipartite graph and the neighborhood of intersecting faces at a given level of subdivision to deduce intersecting faces at the fol…

Discrete mathematicsFoster graph[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS][INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS][ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM][INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]Intersection number (graph theory)Intersection graphlaw.inventionCombinatorics[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]IntersectionlawHomeomorphism (graph theory)Subdivision surfaceCircle graphAlgorithmComputingMilieux_MISCELLANEOUS[ INFO.INFO-DS ] Computer Science [cs]/Data Structures and Algorithms [cs.DS]ComputingMethodologies_COMPUTERGRAPHICSMathematicsDistance-hereditary graph
researchProduct

The mixed general routing polyhedron

2003

[EN] In Arc Routing Problems, ARPs, the aim is to find on a graph a minimum cost traversal satisfying some conditions related to the links of the graph. Due to restrictions to traverse some streets in a specified way, most applications of ARPs must be modeled with a mixed graph. Although several exact algorithms have been proposed, no polyhedral investigations have been done for ARPs on a mixed graph. In this paper we deal with the Mixed General Routing Problem which consists of finding a minimum cost traversal of a given link subset and a given vertex subset of a mixed graph. A formulation is given that uses only one variable for each link (edge or arc) of the graph. Some properties of the…

Discrete mathematicsGeneral MathematicsArc RoutingMixed graphFacetsPolyhedral combinatoricsRural Postman Problemlaw.inventionGeneral Routing ProblemCombinatoricsTree traversalMixed Chinese Postman ProblemlawroutingGraph traversalGraph (abstract data type)Destination-Sequenced Distance Vector routingMATEMATICA APLICADACircle graphArc routingSoftwareMathematicsofComputing_DISCRETEMATHEMATICSMathematicsPolyhedral graph
researchProduct